Ads 468x60px

Thursday, March 13, 2008

Two Tons of Steel


While I was waiting for the bus one morning, I decided I'd count cars to see how many were single-occupancy vs. two or more. I came up with a ratio of roughly 20 single-occupancy vehicles for every multiple-occupancy vehicle. The multiple-occupancy vehicles were most often work trucks, containing plumbers or construction workers going to a job.

People have to get to work. Maybe they don't have public transit where they are, or maybe they just don't feel like sitting next to smelly commuters, but for whatever reason, here in the U.S. they drive their cars.

The average American weighs about 180 lbs. Due to our love affair with SUVs, the average American car weighs over 2 tons and climbing. That means every time a person drives a single-occupancy vehicle to work, they aren't just expending the energy it takes to move 180 lbs 15 miles. They're also lugging around a hulking two-ton chunk of steel and plastic. The passenger of the average single-occupancy vehicle is only about 1/24 (4%) of the mass that's being moved to and from work. That's ridiculous!

Of course, we make up for the big weight of our cars with big engines so they can go vroom. That adds up to a lot of gasoline burned, for no clear benefit. In other words, most of us could easily be driving vehicles that perform the exact same function but burn 1/3 the gasoline. I'm not talking about space-age technology here; these vehicles are already on the market.

Why do we commute so inefficiently when better options surround us? I think there are several reasons. First of all, gasoline is dirt cheap. We have no incentive to be efficient beyond our own consciences. Even with the recent price jumps, gasoline doesn't cost much more than it ever has, if you adjust for inflation. In Europe, where high taxes mean gasoline can cost four times as much as in the US, vehicles are lighter and more efficient.

Secondly, we've always been a very car-centric society. Cars appeal to our desire for independence, power and control. A large, powerful car is a status symbol in the US. We've inherited these attitudes from previous generations and we're just beginning to question them. Are there healthier and less wasteful ways of getting to work?

There are, and many of them are very simple. The first and simplest is a carpool. If we put two average Americans in our two-ton car, all of a sudden the people are 1/12 the weight of the vehicle. With four people, the number jumps to 1/6. We've just made our vehicle almost four times as fuel efficient, per passenger! 1,000 lbs per person is still a lot of weight to be lugging around though, so let's look at some other options.

If you are on the market for a new car, fuel-efficient models abound. The new hybrid cars by Toyota and Honda are twice as efficient as their non-hybrid brethren, and not much more expensive. Some people truly need SUVs for their business, but I have good news for them too: there are now hybrid SUVs as well. That's right ladies and gentlemen, they're the most efficient gas guzzlers on the market.

Public transportation is another great option where it's available. Buses are big and heavy but they can accommodate many people.

Now let's get into the really efficient vehicles. Motorcycles and scooters weigh from 250-500 pounds, meaning that a passenger would be from 1/2 to 1/4 the total weight of the vehicle. Now we're beginning to make some sense. Certain scooters can go over 100 miles per gallon of gasoline.

An even better option is to use vehicles that don't burn gasoline at all. A bicycle weighs about 20-30 pounds, making the passenger about 9/10 of the total vehicle weight. That weight ratio might change as the average American loses some weight however. Even if you factor in the extra food you eat when you cycle regularly, it's still terribly efficient. Best of all, bikes allow us to get exercise and feel the sun for a while.

The title for the most fuel-efficient and low-tech vehicle around goes to feet. When using a pair of these, the passenger is 100% of the weight of the vehicle. You can walk until you wear them out and you still won't have burned a single molecule of gasoline. Now that's efficient.

Thanks to lairdscott for the CC photo.

No comments:

Post a Comment